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Abstract

We analyze the heat transport from a heated sphere as it melts its way through a solid medium. The work of Emer-

man and Turcotte [Int. J. Heat Mass Transfer 26 (11) (1983) 1625–1630] is used as a starting point. A thermal layer is

added beyond the melt layer to account more accurately for the heat transport to the surrounding medium. This two-

layer approach allows us to estimate the extent of the melt region.
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1. Introduction

Emerman and Turcotte [4] considered a problem that

they aptly termed Stokes� problem with melting. The

classical Stokes� problem calculates the drag on a sphere

moving at constant velocity through a viscous, fluid

medium. ‘‘With melting’’ extends the concept to a sphere

embedded in a solid medium. The sphere is provided

with a constant heat input that maintains its surface

temperature above the melting point of the surrounding

medium. The sphere thus ‘‘melts its way through’’ that

medium, i.e., the heat transported from the sphere is suf-

ficient to melt a region of the medium around the sphere.

The sphere falls through the melted, fluid region, ulti-

mately achieving a steady-state velocity. Emerman and

Turcotte were interested in the applications of this prob-
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lem in geophysics, e.g., magma migration, core forma-

tion, and the motion of iron bodies and detached

slabs. As they observed, the problem is also related to

the so-called China Syndrome, in which a run-away nu-

clear reactor core melts its way through the earth [15].

The problem is, however, quite general. For example,

the medium could be salt, ice, or any solid with a fairly

sharp melting point. In the 1960s, well before the publi-

cation of [4], several patents were granted for ‘‘under-

ground thermal penetrators’’ using the same principles

[1,3]. Indeed, one of them proposed using a nuclear reac-

tor as the heat source. The goal was to drill deep into the

earth, in some cases producing a hole by removing the

molten rock by means of drilling mud or forced air.

An important question that we address in this work is

the size of the resulting hole, i.e., the diameter of the cyl-

inder that is melted by the descent of the sphere.

Emerman and Turcotte [4] employed the integral bal-

ance method to obtain an approximate solution of the

momentum and energy conservation equations in
ed.
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Nomenclature

We follow the nomenclature used by Emerman and

Turcotte [4].

cp specific heat capacity of melt

g acceleration due to gravity

k thermal conductivity of melt, jqmcp
L latent heat of fusion

L 0 reduced latent heat of fusion,

L + cp(Tm � T1)

p pressure

p0 pressure at equator

Pe Peclet number, u0R/j
Q total heat flux from the sphere

R radius of sphere

Ste Stefan number, cp(T0 � T1)/L0

t time

T temperature

T dimensionless temperature in molten layer,

(T � Tm)/(T0 � Tm)

T dimensionless temperature in thermal layer,

(T � T1)/(Tm � T1)

Tm melting point of medium

T0 temperature at surface of sphere

T1 ambient temperature of medium

u tangential velocity

u dimensionless tangential velocity, u/u0
�u tangential velocity averaged over the molten

layer

u0 velocity of sphere

v normal velocity

v dimensionless normal velocity, v/u0
x distance tangential to sphere

y distance normal to sphere

y dimensionless distance normal to sphere,

y/R

d molten layer thickness

Greek symbols

d dimensionless molten layer thickness, d/R

e dimensionless thermal layer thickness

Dq density difference between sphere and mol-

ten medium

g dynamic viscosity of melt

h colatitude

h* colatitude at which lubrication approxima-

tion becomes invalid

j thermal diffusivity of melt

qm density of melt

qs density of sphere
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lubrication form. A key result in [4] was an expression

for the thickness, d (or d in dimensionless form), of the

molten layer as a function of the colatitude, h. The rele-
vant geometry is displayed in Fig. 1. That dependence is

d(h) = d0 sec (h), where d0 is the thickness at the bottom

of sphere (corresponding to h = 0). The authors observe

that as h increases this expression would give a thickness

for which the lubrication approximation would no long-

er be valid. Indeed, instead of approaching a finite value

at the ‘‘equator’’ (corresponding to h = p/2), d ap-
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Fig. 1. Geometry for Stokes� problem with melting.
proaches infinity. The colatitude at which the approxi-

mation is no longer valid was denoted by h*. The

contributions to the heat flux and drag from the region

h* 6 h 6 p/2 were shown to be negligible for the range

of parameter values of interest. The relationships devel-

oped between the power input, terminal velocity, and

sphere temperature are thus useful in this regime. The

radius of the melted cylinder at the equator will gener-

ally be quite close to the radius of the descending sphere.

Obviously, the expression obtained in [4] for d(h) cannot
provide an estimate for difference between these radii.

In the intervening years several investigators have

worked on closely related problems. The problem of

Stokes�s flow with strongly temperature-dependent vis-

cosity in a fluid is also closely related to ours and was

studied experimentally and analytically by Morris and

coauthors [14,2]. In [14], the drag on and the heat flux

out of a hot sphere moving steadily in a fluid with

strongly temperature-dependent viscosity is determined

analytically, while [2] studies a closely related problem

experimentally and analytically. The current paper deals

with a hot sphere moving through a fluid whose viscosity

is assumed to be constant. In some cases, incorporating

the effects of temperature-dependent viscosity in the con-

text of the problem we study could be of considerable

interest. Moallemi and Viskanta have studied the melt-

ing around a moving heat source experimentally
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Fig. 2. Geometry for Stokes� problem with melting with

thermal layer added.
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[10,11] and theoretically [12,13]. They developed detailed

mathematical models and solved them using numerical

integration. Heat transport and flow in the molten wake

of the sphere were included. Reasonably good agree-

ment between simulation and experimental results was

obtained, although some systematic departure in heat

source velocity was noted. Calculation of the solid–

liquid interface using this numerical approach gives a

finite, realistic value for the melt layer thickness at the

equator of a moving sphere.

In this paper, we investigate the question of whether

an estimate for this thickness can be obtained by essen-

tially analytical means similar to those employed by

Emerman and Turcotte. We show that the singularity

in d(h) at p/2 is not due to the lubrication approxima-

tion. It is really an effect of the way in which heat trans-

port to the surrounding medium was treated. We

surround the melt layer with a thermal layer that makes

possible a more accurate description of heat transport to

the surrounding solid medium. We demonstrate that this

novel two-layer approach results in a finite value for

d(p/2). In addition, the power required to achieve a given

terminal velocity is somewhat greater than that obtained

from the Emerman and Turcotte model for moderately

large values of the Peclet number. Our computations

suggest that this difference becomes smaller as the Peclet

number increases. The basic approach employed by

Emerman and Turcotte is outlined in Section 2.1. In Sec-

tion 2.2 we describe the details of our new two-layer ap-

proach. The algebraic manipulations associated with the

integral balance method, which in our case is employed

twice, are accomplished using the computer algebra sys-

tem Maple. These Maple work sheets are available from

the authors upon request. The dependence of d on the

colatitude h is obtained by the numerical solution of

an ordinary differential equation. In Section 3 we pro-

vide a detailed example of how our analysis and results

compare with those of Emerman and Turcotte.
2. Model and analysis

The geometry of the problem is displayed in Fig. 1.

Under the assumptions outlined in this section, the mol-

ten layer thickness d(h) (or d(h) in dimensionless form) is

given by Eq. (8) where h represents the colatitude and

Ste and Pe are the Stefan and Peclet numbers. In Section

2.1, we follow Emerman and Turcotte [4] in deriving this

expression based on the conservation of momentum,

mass, and energy in approximate forms valid when

d(h)� 1. The computations leading to the final expres-

sion for the melt layer thickness provide insight into

the reason for its observed anomalous behavior near

the equator and lead directly to our two-layer approach

of Section 2.2. Our two-layer approach introduces a

thermal layer as shown in Fig. 2. The dimensionless
thermal layer thickness e(h) satisfies Eq. (16). Because

we need an analytic expression for e(h), we use an accu-

rate series solution for Eq. (16). The assumptions and

details of our approach are given in Section 2.2.

2.1. The Emerman and Turcotte model

Under the lubrication assumption, the Navier–Stokes

equation becomes (see, for example, [16]) g o2u
oy2 ¼

dp
dx, with

boundary conditions u(0) = 0 and u(d) = 0, where

u = u(y) is the tangential component of velocity in the

molten layer. We assume that the pressure in the molten

layer, p = p(x), depends only on x and that the thickness

of the molten layer, d = d(h), is a function of the colati-

tude h = x/R. Because the molten layer/solid medium

interface is in essence a moving wall, u(d) = u0 sinh seems

to be the correct boundary condition. In what follows

we work under the assumption that d� R, so that

u� u0 throughout most of the melt region. The bound-

ary condition u(d) = 0 is consistent with these assump-

tions as pointed out in [4]. We have investigated the

use of the modified boundary condition u(d) = u0 sinh
and find that it results in much greater complexity while

not significantly affecting the results. Details of our

investigation of this issue are presented in Appendix

A. The boundary value problem for u is solved to obtain

u ¼ 1
2g ð

dp
dxÞyðy � dÞ. Equating the mass flux ahead of the

sphere to the mass flux about the sphere using conser-

vation of mass, we obtain pðR sin hÞ2u0 ¼ 2pRd�u sin h,
where �u represents the average velocity over the molten

layer. Solving for �u and using the definition we arrive at
u0R
2d sin h ¼ �u ¼ 1

d

R d
0
udy ¼ �d2

12g
dp
dx. Substituting the pres-

sure gradient from the last equation in the velocity

expression above, we obtain u ¼ � 3Ru0
d3

yðy � dÞ sin h.
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The equation of continuity in boundary layer form for

flow over a sphere is (see, for example, [16])
o
ox ðu sin hÞ þ sin h ov

oy ¼ 0, where v = v(y) represents the

normal component of the velocity in the molten layer.

At this point, Emerman and Turcotte employed the

continuity equation to obtain an expression for v(d),

the normal component of the velocity at the interface.

Finally, the equation for conservation of energy in

boundary layer form is used to determine d = d(h).
Following [16], when d� R, the steady-state energy

equation is u oT
ox þ v oT

oy ¼ j o2T
oy2 .

As an alternative to direct solution, we will integrate

the energy equation over the molten layer to obtain an

ordinary differential equation in d. This approach is clo-

sely related to the integral method of boundary layer

theory (see for example, [16]) and the integral balance

method for heat conduction (see for example, [8]). We

employ dimensionless variables defined via the following

transformations: h = x/R, y = y/R, d = d/R, u = u/u0,

v = v/u0, and T = (T � Tm)/(T0 � Tm). Boldface symbols

represent dimensionless quantities with the following

exception: the colatitude h is unchanged and the thick-

ness of the molten layer is represented by d(h) in dimen-

sionless form. By direct substitution, we arrive at

u = �(3/d3) sinhy(y � d), the dimensionless continuity

equation o
oh ðu sin hÞ þ sin h ov

oy
¼ 0, and the dimensionless

energy equation u oT
oh þ v oT

oy
¼ 1

Pe
o2T
oy2

, where Pe = u0R/j is

the Peclet Number. Multiplying the dimensionless en-

ergy equation by sinh, integrating with respect to y from

0 to d, using integration by parts on the second integral

on the left hand side, and noting that vT sin hjd0 ¼ 0

(because v(0) = T(d) = 0) yields

Z d

0

u sin h
oT

oh
dy�

Z d

0

T sin h
ov

oy

� �
dy

¼ sin h
Pe

oT

oy

����
d

� oT

oy

����
0

� �
: ð1Þ

We observe that because T(d) = 0, the aforemen-

tioned expression for v(d) (or v(d) in dimensionless form)

is not required. Using the dimensionless continuity

equation together with standard integral equalities and

the condition T(d) = 0 for the second term on the left

hand side leads to the final integral formulation

o

oh

Z d

0

u sin hTdy ¼ sin h
Pe

oT

oy

����
d

� oT

oy

����
0

� �
: ð2Þ

Emerman and Turcotte then used a quadratic poly-

nomial in y for the temperature profile in the molten

layer based on the boundary conditions

T ð0Þ ¼ T 0 () Tð0Þ ¼ 1; ð3Þ

T ðdÞ ¼ Tm () TðdÞ ¼ 0; ð4Þ
oT
oy

����
y¼d

¼ � qmu0L
0

k
cos h () oT

oy

����
y¼d

¼ � Pe
Ste

cos h ð5Þ

where T = T(y) and T = T(y) represent the temperature

profiles, and Ste = cp(T0 � T1)/L 0 is the Stefan number.

The use of higher order polynomials for the temperature

was investigated by Fengya and Stevens [5]. They used a

cubic temperature profile and investigated the depen-

dence of the molten layer thickness on this choice and

the Stefan number. However, for the range of values

of the Stefan number most frequently encountered

(small Ste), the differences were shown to be minor.

As we shall see, the boundary condition (5) leads to

certain anomalies. This condition accounts for the heat

required to raise the temperature of the solid medium

within the control volume from T1 to Tm and to melt

the solid medium, but fails to incorporate the heat trans-

fer by conduction through the sides. The loss of accu-

racy occurs as h approaches p/2. If d were to approach

a finite value, then the heat loss to the medium outside

a cylinder of radius R + d(p/2) would be neglected. We

shall see that the use of this boundary condition leads

to d!1 as h ! p/2.
The analysis of Emerman and Turcotte yields many

useful results which we now outline. In the next section,

we will compare and contrast these with those based on

a different boundary condition which we derive from our

two-layer approach.

The quadratic function for T satisfying the boundary

conditions (3)–(5) is

T ¼ 1þ y
Pe
Ste

cos h � 2

d

� �
þ y2

1

d2
� Pe
Ste

cos h
d

� �
: ð6Þ

Because o2T
oy2

jy¼0 ¼ 0, by substituting y = 0 in the

dimensionless energy equation, the coefficient of y2 in

Eq. (6) must vanish. This observation immediately leads

to the expression d = d(h) = Ste/(Pecosh), which we will

compare with the expression obtained using the integral

method below.

Substituting the quadratic temperature profile from

(6) into the integral formulation (2) we obtain the fol-

lowing differential equation for the molten layer width

d(h)

dd
dh

¼ 20Ste�Pe2d2�20Pedcosh�3Pe2d2cos2h�3StePedcosh

Pe2dsinhcosh
:

ð7Þ

Because dd
dh jh¼0 ¼ 0 by symmetry and because sinh ap-

pears in the denominator of the differential equation,

d(0) must be chosen to make the numerator of (7) vanish

as h ! 0. Choosing the positive root of the quadratic

in d obtained by setting h = 0 in the numerator leads

to the initial condition dð0Þ ¼ f ðSteÞ
Pe where f ðzÞ ¼

0:25ð�3z� 20þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z2 þ 280zþ 400

p
Þ. Solving Eq. (7)

subject to this initial condition yields
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dðhÞ ¼ dðhÞ
R

¼ dð0Þ sec h ¼ f ðSteÞ
Pe

sec h: ð8Þ

It is easily verified that as Ste! 0, f(Ste)/Ste! 1.

Thus, the expression for the molten layer thickness de-

duced directly from the dimensionless energy equation

is consistent with the result from the integral method

for small values of Ste. The expression for the width

of the molten layer obtained in (8) following the bound-

ary conditions used by Emerman and Turcotte shows

that the width of the molten layer, d, goes to 1 as the

colatitude, h, approaches p/2. Obviously, this model is

unsuitable for estimating the size of the cylinder of med-

ium that melts.

The dimensionless power consumption, Q, obtained

by neglecting the heat flux through the hemisphere away

from the direction of travel, is

Q ¼ Q

pR2qu0L0 ¼ � 2 Ste
Pe

Z p=2

0

oT

oy

����
y¼0

sin hdh

¼ 2Ste
f ðSteÞ � 1; ð9Þ

where Q is the total heat flux from the sphere. As

Ste! 0, Q approaches 1, i.e., Q! pR2qu0L 0, the power

required to melt a cylinder of radius R advancing at a

velocity u0. This expression clearly excludes any heat loss

to the surrounding rock and underpredicts the power re-

quired for some cases, especially when Tm � T1 is large.

2.2. Including heat loss to the environment:

A two-layer approach

The anomaly observed above stems from the bound-

ary condition (5). Notice that as h approaches p/2, the
gradient oT

oy jy¼d approaches zero. This behavior is not

consistent with the temperature at this point being Tm

and that of the surrounding medium being T1. An im-

proved boundary condition at this solid–liquid interface,

based on the requirement that the latent heat required to

melt the solid must be supplied by conduction is

k
oT
oy

� �
¼ ks

oT s

oy
� kl

oT l

oy
¼ Lqu0 cos h; at y ¼ d ð10Þ

where [Æ Æ Æ] denotes the jump and the subscripts s and l

represent quantities associated with the solid and molten

(liquid) medium, respectively. To apply the boundary

condition (10) we need to compute oT s

oy . To this end, we

consider a thermal layer beyond the melt region as

shown in Fig. 2. The temperature in the thermal layer

varies from the melting point of the medium, Tm, at

the melt/solid interface to the ambient temperature of

the solid medium, T1, at its outer boundary. The coor-

dinate system of the molten layer is extended into the

thermal layer and the variable y is re-mapped so that

it is zero at the interface between the molten and thermal

layers. The notations are the same as before and we let
e = e(h) represent the dimensionless thickness of this

thermal layer. We introduce the non-dimensional tem-

perature T ¼ ðT s � T1Þ=ðTm � T1Þ for the thermal

layer. Using the relation kl = qmcpj, the boundary condi-
tion (10) in dimensionless form is

oT

oy
¼ � Pe

r
cos h þ b

oT

oy
; ð11Þ

where

b ¼ ksðTm � T1Þ
klðT 0 � TmÞ

; and r ¼ cpðT 0 � TmÞ
L

: ð12Þ

The quantity r is analogous to Ste but is based on the

actual latent heat. In our calculations, we shall assume

ks = kl. We will now use the integral balance approach

on the thermal layer to find a differential equation for

e, solve the equation using suitable initial conditions,

and use the solution to compute oT
oy
.

Using u ¼ u0 sin h and v ¼ �u0 cos h for the velocity

in the energy equation applied to the thermal layer,

and changing to dimensionless form using T yields

sin h
oT

oh
� cos h

oT

oy
¼ 1

Pe
o2T

oy2
: ð13Þ

Integrating the above equation, using the integral

identity

o

oh

Z e

0

Tdy ¼ de
dh

TðeÞ þ
Z e

0

oT

oh
dy; ð14Þ

and the boundary conditions, Tð0Þ ¼ 1, TðeÞ ¼ 0, and
oT
oy
jy¼e ¼ 0, yields the integral balance

sin h
o

oh

Z e

0

Tdyþ cos h ¼ � 1

Pe
oT

oy

����
y¼0

: ð15Þ

Assuming a quadratic temperature profile in the

thermal layer, we obtain TðyÞ ¼ 1� 2ðy=eÞ þ ðy2=e2Þ.
Substituting in the integral balance equation (15), we

find that the thermal layer thickness, e, satisfies the dif-

ferential equation

de
dh

¼ 6� 3ePe cos h
ePe sin h

: ð16Þ

Since de
dh jh¼0 ¼ 0 and sinh appears in the denomina-

tor, the initial condition on e must be e(0) = 2/Pe.

Eq. (16) is an Abel�s equation of the second kind

which can be transformed into an Abel�s equation of

the first kind using standard transformations (see, for

example, [7]). The most general known solution method

for Abel�s equations of the first kind due to M. Chini are

outlined in [7]. We were unable to obtain explicit closed

form solutions to Eq. (16) following these methods be-

cause we were not able to evaluate resulting integrals

in closed form, even using Maple. As an alternative,

we use a series approximation for e(h) which yields the

required expression for oT
oy
jy¼0. We have carefully ex-

plored series solutions using various orders and com-



Table 1

Properties used in sample calculations

Variable Value

R 3 cm

g 10 Pas

T1 298 K

cp 1.046 kJ/(kg Æ K)

L 418 kJ/kg

Tm 1473 K

j 1 · 10�6 m2/s

qm 2700 kg/m3

qs 9000 kg/m3
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pared our series solutions with a numerical (exact)

solution.

When h is not near p/2, the relative errors between

the series and exact (numerical) solutions are small

independent of the order. The maximum relative error

occurs at h = p/2 independent of the order of approxi-

mation and the value of Pe. For example, if Pe = 10.0,

the order-4 series solution produces a relative error of

0.0413 when h = p/4, while the order-6 and order-8

approximations yield relative errors of 0.0044 and

0.0001 respectively. For the same Peclet number, the rel-

ative errors corresponding to h = p/2 are 0.3523, 0.1097,

and 0.0039 respectively. When the radius, R, of the

sphere is 3 cm and the total heat flux out of the sphere,

Q, is 5000 W, the Peclet number is Pe = 10.33. These are

the values used in our worked example in Section 3. The

series approximations of different orders all under pre-

dict the thickness of the thermal layer, e(h), resulting
in a conservative estimate for the temperature gradient.

A detailed listing of relative errors for the order-4,

order-6, and order-8, series approximations at different

h values using a the values 5.0, 10.0, and 15.0 for Pe

are given in Appendix B. Although we use the order-4

series approximation for our discussion in the rest of this

section for the sake of simplicity of the expressions in-

volved, it is a simple step to extend our analysis using

higher order series approximations for Eq. (16). In fact,

we use the order-8 approximation for our worked exam-

ple in Section 3.

Substituting the order-4 series approximation

eðhÞ ¼ 2

Pe
þ 3

3 Peþ 4
h2 þOðh4Þ; ð17Þ

in the quadratic temperature profile leads to

oT

oy
¼ � 6Pe2 þ 8Pe

8þ 6Peþ 3Peh2
: ð18Þ

Using this expression in the dimensionless boundary

condition (11) results in

oT

oy
¼ � Pe

r
cos h � bð6Pe2 þ 8PeÞ

8þ 6Peþ 3Peh2
: ð19Þ

Notice that the first term on the right hand side of the

last expression closely resembles the boundary condition

(5) used by Emerman and Turcotte. The only difference

is that r = (cp/L)(T0 � Tm), which appears in (19), does

not include the heat required to bring the solid medium

up to a temperature of Tm; this is included in Ste = (cp/

L 0)(T0 � Tm) which Emerman and Turcotte use in (5).

Also, using the condition (19) guarantees that oT
oy
6¼ 0

as h ! p/2.
The integral method based on the integral balance (2)

and a quadratic temperature profile based on the

conditions (3)–(5) is now repeated using our two-layer

approach. The only change is the replacement of condi-

tion (5) by the improved (two-layer) condition (19). We
have been unable to obtain closed-form solutions for the

molten layer thickness d(h) using the two-layer ap-

proach. In fact, the differential equation satisfied by d
is quite complicated. Thus, for given values of Pe, r,
and b, we compute d(h) numerically. The molten layer

thickness, d, obtained using the two approaches agree

very closely for small values of h. However, d(p/2) ob-
tained using the two-layer approach is finite.
3. A worked example

In this section we present sample calculations that

illustrate the differences in the results based on the

boundary condition in Eq. (5) and those obtained using

the two-layer approach. First, we discuss the relevant

variables and their relationships. As is evident from

the nomenclature, there are many variables for which

values must be specified. Most of these values are deter-

mined as physical properties of the solid medium and

the material composing the heated sphere. Following

Emerman and Turcotte [4], we have used properties

for the solid medium that are typical for ‘‘rock,’’ for

example, basalt. We have taken the sphere to have a ra-

dius of 3 cm, representative of a small rock penetrator.

The values for the relevant physical properties are given

in Table 1.

Several important variables do not relate directly to

physical properties that can be easily determined. They

are Q, the rate of heat supplied to (and in the steady-

state the total flux leaving) the sphere; u0, steady-state

velocity of the sphere; and T0, the surface temperature

of the sphere. The values for these variables must be

determined from two balances once the value for one

of them has been specified. For the rock penetrator we

consider here, Q, the rate of heat input to the sphere,

is most easily set. It is, however, possible to specify either

u0 or T0 and then determine Q and the remaining vari-

able. The heat flux from the sphere is given in Eq. (9).

The equality of the drag and buoyancy forces act-

ing on the sphere provides the second steady state

relationship or the force balance. As observed in [4], if
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d = d/R� 1, then the drag force due to shear stress is

negligible compared to that due to pressure, giving

F d ¼ 2pR2

Z p=2

0

ðp � p0Þ cos h sin hdh; ð20Þ

where p0 is the pressure at h = p/2, assumed to be uni-

form over p/2 6 h 6 p. The buoyancy force is

F b ¼
4

3
pR3gDq; ð21Þ

and Fd = Fb gives the requisite force balance. The

h-dependence of oT
oy jy¼0 can be determined from the tem-

perature profile (6) upon differentiating with respect to

y once d(h) is known. Likewise, the h-dependence of

p � p0 can be obtained by integrating u0R
2d sin h ¼

1
d

R d
0
udy ¼ �d2

12g
dp
dx given d(h) = Rd(h). For the purpose

of this comparison, we denote the expression for d(h)
from the Emerman and Turcotte model given in Eq.

(8) by dET. The dependence of d on h resulting from

the 2-layer approach will be designated d2L. As shown

in Section 2.1, dET(h) depends only on the dimensionless

groups Pe and Ste. In Section 2.2 it is demonstrated that

d2L(h) depends only on Pe, r, and b. All of these dimen-

sionless parameters depend only on u0 and T0, in addi-

tion to the known material properties given in Table 1.

Thus if the rate of heat input to the sphere, Q, is known,

the heat and force balances form a system of two nonlin-

ear equations for u0 and T0. In all cases that we have

examined only one solution of this system yields physi-

cally meaningful values. The closed form for dET(h)
lends itself well to this determination. In the two-layer

approach, the same two balances can be solved to obtain

u0 and T0, but doing so is somewhat more complicated

because d2L(h) is obtained by solving an ordinary differ-

ential equation numerically.

Here we give a comparison based on values for

u0 and T0 computed from the balances derived using

Eq. (8). Using the values listed in Table 1 and a total

heat flux Q = 5000 W, the velocity was found to

3.445 · 10�4 m/s (2.067 cm/min) with a sphere tempera-

ture of 1973 K. The resulting values of 10.33 and

0.3177 for Pe and Ste completely determine dET(h). It
is instructive to use the same values for u0 and T0 to ob-

tain d2L(h) for the two-layer model. The corresponding

values for r and b are 1.252 and 2.349, respectively. In

Fig. 3, the graphs of both dET(h) and d2L(h) are shown.

The innermost curve in the figure represents the bound-

ary of the sphere and the middle line shows d2L. The
eighth order approximation for e(h) was used for these

calculations. The values for dET(0) and d2L(0) found by

requiring the numerator of the respective expression

for dd
dh to vanish at h = 0 are identical to nine significant

digits. The value is approximately 0.0285, validating

the assumption d � 1 and giving a melt layer thickness

there of approximately 0.86 mm. Further, we observe

the near perfect agreement between dET(h) and d2L(h)
for h from 0 to approximately p/3. This congruity is

striking because of the different ways in which they are

obtained, i.e, the equations that determine them are

quite dissimilar in form. Moreover, because dET and

d2L are nearly equal over 0 6 h 6 h*, it is reasonable

to expect that the integrals in Eqs. (9) and (20) would

not differ appreciably if d2L were used instead of dET.
We further examine the heat balance below. The salient

difference between dET and d2L is evident as h ap-

proaches p/2. As we know, dET becomes infinite, indicat-

ing a physically unrealistic unbounded melt region. In

contrast, d2L(p/2) = 0.1325, a finite value that is still con-

sistent with the use of the lubrication approximation.

The predicted cross-sectional area of the melt region is

approximately 28% larger than the projected area of

the sphere. Thus the use of the boundary condition in

Eq. (19) obtained by adding the thermal layer to account

for heat transport to the surroundings eliminates the

anomalous singularity evident in dET.
Finally, we examine the total heat flux from the

sphere given by the integration indicated in Eq. (9) using

d2L to determine oT
oy jy¼0 instead of dET. The tedious com-

putations involved were carried out with comparative

ease using the numerical and symbolic capabilities of

Maple. For the case discussed above, 5765 W was ob-

tained for Q. This value is moderately higher than the

value of 5000 W used to obtain the values for u0 and

T0 employing Eq. (9) based on dET. We observe that

the gradient oT
oy jy¼0 derived from dET(h) vanishes as h ap-

proaches p/2, but approaches a non-zero value in the

two-layer approach. The increase in the indicated total

heat flux is thus due to the additional radial heat loss

to the surrounding medium. In our computational inves-

tigations, we have observed that the difference in the

power from the two approaches diminishes as Pe be-

comes larger.
4. Summary and conclusions

In [4], Emerman and Turcotte obtained an ele-

gant solution for the thickness of the molten layer
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surrounding a heated sphere as it steadily melts its way

through a solid medium. The closed-form expression

that they derived for this function of colatitude, dET(h)
as given in (8), facilitated the evaluation of the integrals

required to compute the heat flux from the sphere and

the drag that it experiences. However, the solution

exhibits a non-physical singularity, i.e., the thickness

tends to infinity as the equator is approached. In this

paper we have shown that the origin of this singularity

is the use of a boundary condition that does not include

heat loss to the surrounding medium beyond the portion

that is eventually melted.

In order to account for such heat transport, the inte-

gral balance method of Goodman [6] was employed

across a thermal layer that extends beyond the melt re-

gion. The determination of the thickness of that thermal

layer, found as a truncated series solution, provided an

expression for the temperature gradient in the solid at

the melt interface. The exact boundary condition (10)

could then be employed. The integral balance method

was then applied to the melt layer using the temperature

profile determined from this boundary condition. The

resulting differential equation for the melt thickness

was solved numerically to obtain the solution, d2L(h),
based on our two-layer approach.

The comparison between dET(h) and d2L(h) for the

case shown in Fig. 3 is instructive. The agreement be-

tween the two until quite close to the equator is notewor-

thy. For this example, the heat flux from the sphere

based on d2L was calculated to be 5765 W, compared

to 5000 W obtained using dET. The increase is due to

additional radial heat loss to the surroundings. In the

context of the overall agreement, it is noteworthy that

the singularity in the melt thickness has been resolved

using the two-layer approach.
Table B.1

Relative errors Ej(h) for 5.0 6 Pe 6 15.0

Peclet number Error h = p/4 h = p/3 h = p/2

j = 4 0.026959 0.072930 0.237637

5.0 j = 6 0.001386 0.006103 0.035693

j = 8 0.000088 0.000744 0.010866

j = 4 0.041270 0.112223 0.352307

10.0 j = 6 0.004419 0.019761 0.109688

j = 8 0.000107 0.000526 0.003873

j = 4 0.048947 0.134486 0.419533

15.0 j = 6 0.006809 0.031047 0.171973

j = 8 0.000509 0.003549 0.023897
Appendix A. Boundary condition at molten layer/rock

interface

As mentioned in Section 2.1, the boundary condition

u(d) = u0 sinh is more appropriate than u(d) = 0 at the

molten layer/solid medium interface. However, when

d� R, using either boundary condition yields no dis-

cernable difference in the results. Note that, for the pur-

poses of this section, we do not use the thermal layer

introduced in Section 2.2. For example, if we were to

use the parameters from Section 3 and compute the

dimensionless width of the molten layers using the

two different boundary conditions for u(d), the answers

are almost identical even when h is very close to p/2.
In particular, we obtain 0.947 · 10�3 for d(p/3) using

the boundary condition u(d) = 0 and 0.948 · 10�3

using u(d) = u0 sinh. Even for d(p/2.2) we obtain

0.333 · 10�2 and 0.337 · 10�2, respectively. We have

used the dimensionless analog of the simpler boundary
condition, u(d) = 0, for our two-layer approach in

Section 2.2.
Appendix B. Series solution for the thermal layer

We use ej(h) to represent the order-j series solution of

Eq. (16) subject to the initial condition e(0) = 2/Pe, and

eex(h) to represent the exact (numerical) solution. The

relative error associated with ej(h) will be represented

as Ej(h) and defined in the usual way as

EjðhÞ ¼
ejðhÞ � eexðhÞ

eexðhÞ

����
����: ðB:1Þ

The expressions for e4(h), e6(h), and e8(h) are

e4ðhÞ ¼
2

Pe
þ 3

3 Peþ 4
h2 þOðh4Þ; ðB:2Þ

e6ðhÞ ¼
2

Pe
þ 3

3Peþ 4
h2

þ 45Pe2 þ 16

4ð27Pe3 þ 144Pe2 þ 240Peþ 128Þ
h4

þOðh6Þ; ðB:3Þ

and

e8ðhÞ¼
2

Pe
þ 3

3Peþ4
h2þ 45Pe2þ16

4ð27Pe3þ144Pe2þ240Peþ128Þ
h4

þ 128Peþ3696Pe2�4608Pe3þ1647Pe4þ512

120ð5888Peþ6528Pe2þ864Pe4þ3456Pe3þ81Pe5þ2048Þ
h6

þOðh8Þ:
ðB:4Þ

The relative errors Ej(h) for j = 4,6, and 8 are listed in

Table B.1 for h = p/4, h = p/3, and h = p/2. We have used

three representative values of Pe for our calculations.

As expected, max06h6p/2Ej(h) occurs at h = p/2 inde-

pendent of Pe and the order of approximation j. We also

observe that Pe has a nearly linear relationship with the

radius, R, and power, Q. Thus, depending on the param-

eters of a physical problem, the analysis of Section 2.2
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can be carried out using an appropriately accurate series

approximation to Eq. (16).
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